¹¹B(³He, ¹²C) **2010Ki08,2012Ki07** Type Author Citation Literature Cutoff Date Full Evaluation J. H. Kelley, J. E. Purcell and C. G. Sheu NP A968, 71 (2017) 1-Jan-2017 2009Ki13: 11 B(3 He,d) E=8.5 MeV, measured E_p, I_p, E_α, I_α in complete kinematics. 12 C deduced γ -ray and α -decay branching ratios from high energy levels, B(M1). 2010Ki08: XUNDL dataset compiled by TUNL, 2010. The 12 C*(9.6,10.8,11.8,12.7,13.3 MeV) 3α breakup states were populated at E(3 He)=8.5 MeV at the Centro de Microanalisis de Materiales in Madrid. The 3α ejectiles were detected in an array of position sensitive Δ E-E detectors that covering 38% of 4π . The excitation energies of residual 12 C nuclei were determined by complete reconstruction of the 3α +d ejectiles. For sequential decays involving 8 Be, the participation of 8 Be*(0,3.04 MeV) were resolved. A Dalitz plot analysis was used to evaluate the spin and parity of participating resonances. Discussion on Sequential vs Democratic (Direct) breakup processes is given. 2012Ki07: XUNDL dataset compiled by TUNL, 2012. The 3α -particle correlations following $^{12}\text{C}^*$ breakup in search of support for direct 3-body breakup of $^{12}\text{C}^*$ (7.65 MeV) as suggested by (2011Ra34). Significant discussion is given on the astrophysical impact of modifications to the 3α reaction rate as suggested by (2011Ra34). Also see (2012Ma10). The complete reaction kinematics were determined at $E(^{3}He)=8.5$ MeV by coincidence measurement of the recoiling deuteron and the breakup α -particles in an array of four position sensitive ΔE -E telescopes. Analysis of the deuteron momentum indicates $^{12}C*(7.65,9.6,10.8,11.8,12.7)$ groups. The d+3 α multiplicity=4 events corresponding to $^{12}C*(7.65 \text{ MeV})$ were analyzed via Daliz plot analysis of the α -particle correlations; The analysis employed "kinematic fitting", which constrains the event-by-event data to rigorously conserve energy and momentum for the Hoyle state breakup events. No definite evidence for breakup other than sequential breakup via $^{12}\text{C}^*(7.65 \text{ MeV}) \rightarrow \alpha + ^8\text{Be}_{g.s.}$ is observed. Limits of: direct breakup into 3 equal energy α -particles (DDE)<0.9×10⁻³; direct breakup into one α -particle at rest with 2 equal energy α -particles (DDL)<0.9×10⁻³, and decay into 3-body phase space (DD Φ)<5×10⁻³ are deduced. ## ¹²C Levels | E(level) [†] | $J^{\pi \dagger}$ | Γ^{\dagger} | Comments | |-----------------------|-------------------|--------------------|--| | 7654. | 0+ | 9.3 eV | Decay is consistent with 100% decay to α +8Be _{g.s.} . (2012Ki07) determine upper limit of 0.005 | | | | | for direct α decay branches bypassing the ground state of ⁸ Be. | | 9641 | 3- | 46 keV | | | 10844 | 1- | 273 keV | | | 11828 | 2- | 230 keV | | | 12710 | 1+ | 18.1 eV | | | 13.35×10^3 | 4- | 360 keV | | [†] From Adopted Levels.